1) Find the cross product of the unit vectors.
a) $\mathbf{j} \times \mathbf{i}$
b) $\mathbf{i} \times \mathbf{j}$
c) $\mathbf{k} \times \mathbf{i}$
d) $\mathbf{i} \times \mathbf{k}$
2) Find $\|\vec{u} \times \vec{v}\|$ and determine whether $\vec{u} \times \vec{v}$ is directed into the page or out of the page.
a)

b)

3) Given $\vec{u}=\langle 7,3,2\rangle$ and $\vec{v}=\langle 1,-1,5\rangle$ find the following:
a) $\vec{u} \times \vec{v}$
b) $\vec{v} \times \vec{u}$
c) $\vec{v} \times \vec{v}$
4) Given the following vectors find $\vec{w}=\vec{u} \times \vec{v}$ and show that it is orthogonal to both \vec{u} and \vec{v}.
a) $\vec{u}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \quad \vec{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}$
b) $\quad \vec{u}=\mathbf{i}+e^{t} \mathbf{j}+e^{-t} \mathbf{k}, \quad \vec{v}=2 \mathbf{i}+e^{t} \mathbf{j}-e^{-t} \mathbf{k}$
c) $\vec{u}=\left\langle t, t^{2}, t^{3}\right\rangle, \quad \vec{v}=\left\langle 1,2 t, 3 t^{2}\right\rangle$
5) Find two unit vectors orthogonal to both $\langle 1,-1,1\rangle$ and $\langle 0,4,4\rangle$.
6) Find the area of the parallelogram that has the given vectors as adjacent sides:
a) $\vec{u}=\mathbf{j}, \quad \vec{v}=\mathbf{j}+\mathbf{k}$
b) $\vec{u}=\langle 3,2,-1\rangle, \quad \vec{v}=\langle 1,2,3\rangle$
7) Show that $(\vec{u} \times \vec{v}) \cdot \vec{v}=0$ for all vectors \vec{u} and \vec{v}.
8) The vertices of a triangle are: $(2,1,5),(-1,3,4)$, and $(3,0,6)$, find the following:
a) A vector orthogonal to the plane of the triangle.
b) The area of the triangle.
9) A force of 180 pounds acts on the bracket shown below, determine the magnitude of the moment about A by evaluating $\|\overrightarrow{A B} \times \vec{F}\|$.

$10)$ Find the volume of the parallelepiped with the given vertices: $(0,0,0),(3,0,0),(0,5,1),(2,0,5),(3,5,1)$, $(5,0,5),(2,5,6),(5,5,6)$.
10) Use the scalar triple product to determine whether the points: $(1,0,1),(2,4,6),(3,-1,2)$, and $(6,2,8)$ lie in the same plane.
11) A wrench 30 cm long lies along the positive y-axis and grips a bolt at the origin. A force is applied in the direction $\langle 0,3,-4\rangle$ at the end of the wrench. Find the magnitude of the force needed to supply 100 J of torque to the bolt.
